The discovery of an Earth-like planet 4,000 light years away in the Milky Way galaxy provides a preview of one possible fate for our planet billions of years in the future, when the sun has turned into a white dwarf, and a blasted and frozen Earth has migrated beyond the orbit of Mars.
This distant planetary system, identified by University of California, Berkeley, astronomers after observations with the Keck 10-meter telescope in Hawaii, looks very similar to expectations for the sun-Earth system: it consists of a white dwarf about half the mass of the sun and an Earth-size companion in an orbit twice as large as Earth’s today.
That is likely to be Earth’s fate. The sun will eventually inflate like a balloon larger than Earth’s orbit today, engulfing Mercury and Venus in the process. As the star expands to become a red giant, its decreasing mass will force planets to migrate to more distant orbits, offering Earth a slim opportunity to survive farther from the sun. Eventually, the outer layers of the red giant will be blown away to leave behind a dense white dwarf no larger than a planet, but with the mass of a star. If Earth has survived by then, it will probably end up in an orbit twice its current size.
The discovery, to be published this week in the journal Nature Astronomy, tells scientists about the evolution of main sequence stars, like the sun, through the red giant phase to a white dwarf, and how it affects the planets around them. Some studies suggest that for the sun, this process could begin in about 1 billion years, eventually vaporizing Earth’s oceans and doubling Earth’s orbital radius — if the expanding star doesn’t engulf our planet first.
Eventually, about 8 billion years from now, the sun’s outer layers will have dispersed to leave behind a dense, glowing ball — a white dwarf — that is about half the mass of the sun, but smaller in size than Earth.