In 2019, astronomers observed the nearest example to date of a star that was shredded, or “spaghettified,” after approaching too close to a massive black hole.
That tidal disruption of a sun-like star by a black hole 1 million times more massive than itself took place 215 million light years from Earth. Luckily, this was the first such event bright enough that astronomers from the University of California, Berkeley, could study the optical light from the stellar death, specifically the light’s polarization, to learn more about what happened after the star was torn apart.
Their observations on Oct. 8, 2019, suggest that a lot of the star’s material was blown away at high speed — up to 10,000 kilometers per second — and formed a spherical cloud of gas that blocked most of the high-energy emissions produced as the black hole gobbled up the remainder of the star.
Earlier, other observations of optical light from the blast, called AT2019qiz, revealed that much of the star’s matter was launched outward in a powerful wind. But the new data on the light’s polarization, which was essentially zero at visible or optical wavelengths when the event was at its brightest, tells astronomers that the cloud was likely spherically symmetric.
“This is the first time anyone has deduced the shape of the gas cloud around a tidally spaghetiffied star,” said Alex Filippenko, UC Berkeley professor of astronomy and a member of the research team.