M87 in 3D: New view of galaxy helps pin down mass of the black hole at its core

April 13, 2023

Seen from Earth, the giant elliptical galaxy M87 is just a two-dimensional blob, though one that appears perfectly symmetrical and thus a favored target of amateur astronomers.

Yet, a new, highly detailed analysis of the motion of stars around its central supermassive black hole — the first black hole to be imaged by the Event Horizon Telescope (EHT) in 2019 — reveals that it’s not as perfect as it looks.

In fact, M87 is highly asymmetrical, like a russet potato. The galaxy’s shortest axis is about three-fourths (72.2%) the length of its long axis, while the intermediate axis is about seven-eighths (84.5%) that of the long axis.

Knowing this, University of California, Berkeley, astronomers were able to determine the mass of the supermassive black hole at the galaxy’s core to a high precision, estimating it at 5.37 billion times the mass of the sun. By comparison, our own Milky Way has at its center a massive black hole only 4 million times the mass of the sun.

They also were able to measure the rotation of the galaxy, which is a relatively sedate 25 kilometers per second. Interestingly, it is not rotating around any of the galaxy’s major axes, but instead about an axis that is 40 degrees away from the long axis of its 2D image as observed by the Hubble Space Telescope.

Berkeley News