In 10 years, CRISPR transformed medicine. Can it now help us deal with climate change?

June 28, 2022

Coming from a long line of Iowa farmers, David Savage always thought he would do research to improve crops. That dream died in college, when it became clear that any genetic tweak to a crop would take at least a year to test; for some perennials and trees, it could take five to 10 years. Faced with such slow progress, he chose to study the proteins in photosynthetic bacteria instead.

But the advent of CRISPR changed all that. Savage is now pivoting to molecular crop breeding, hoping to find ways to improve their carbon uptake and the amount of carbon they return to the soil. And he hopes to see these improved crops in fields within his lifetime, helping to boost crop yields but also to draw down the excess carbon in the atmosphere that is warming the planet and stash it underground.

“The advent of CRISPR basically allowed us to create new molecular tools for potentially skipping the slow aspects of plant tissue culture and plant genetic engineering, which are large barriers to doing experiments in plants,” said Savage, associate professor of molecular and cell biology at the University of California, Berkeley, an investigator in the Howard Hughes Medical Institute, and member of the Innovative Genomics Institute (IGI), which focuses on the myriad uses of CRISPR-Cas9 genome editing.

Berkeley News